Найдите значение выражения $30 - 0.8 \cdot (-10)^2$.

Найдите значение выражения $30-0, 8\cdot (-10)^2$.

Решение.

Последовательно получаем:

$$30 - 0.8 \cdot (-10)^2 = 30 - 80 = -50.$$

Ответ: -50.

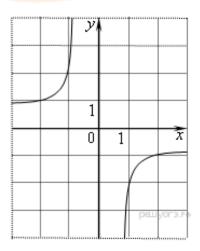
Кисть, которая стоила 240 рублей, продаётся с 25%-й скидкой. При покупке двух таких кистей покупатель отдал кассиру 500 рублей. Сколько рублей сдачи он должен получить?

Решение.

Стоимость одной кисти равна $240 - 0.25 \cdot 240 = 180$ руб. Стоимость двух кистей равна 360 руб. Значит, сдача с 500 рублей составит 140 рублей.

Ответ: 140.

В среднем из 50 карманных фонариков, поступивших в продажу, семь неисправны. Найдите вероятность того, что выбранный наудачу в магазине фонарик окажется исправен.


Решение.

Исправленных фонариков 50 - 7 = 43

Вероятность, что фонарик окажется исправен p(A) = 43 / 50 = 0.86

Ответ: 0,86

Найдите значение k по графику функции $y = \frac{k}{x}$, изображенному на рисунке.

Решение.

Гипербола проходит через точку (=2;1), поэтому: $\frac{k}{-2}=1\Leftrightarrow k=-2$.]

Упростите выражение $\frac{x^2}{y-1}: \frac{x^3}{2y-2}$ и найдите его значение при $\ x=0,5; \ y=-3.$

Упростите выражение $\frac{x^2}{y-1}: \frac{x^3}{2y-2}$ и найдите его значение при $\ x=0,5; \ y=-3.$

Решение.

Упростим выражение:

$$\frac{x^2}{y-1}: \frac{x^3}{2y-2} = \frac{x^2}{y-1} \cdot \frac{2(y-1)}{x^3} = \frac{2}{x}.$$

Найдем значение выражения при x = 0,5; y = -3:

$$\frac{2}{x} = \frac{2}{0.5} = 4$$

Ответ: 4.

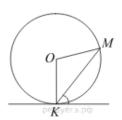
Найдите наименьшее значение x, удовлетворяющее системе неравенств

$$\begin{cases} 3x + 12 \ge 0, \\ x + 3 \le 1. \end{cases}$$

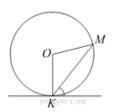
Найдите наименьшее значение х, удовлетворяющее системе неравенств

$$\begin{cases} 3x + 12 \ge 0, \\ x + 3 \le 1. \end{cases}$$

Решение.


Решим систему:

$$\begin{cases} 3x+12 \geq 0, \\ x+3 \leq 1. \end{cases} \Leftrightarrow \begin{cases} x \geq -4, \\ x \leq -2. \end{cases} \Leftrightarrow -4 \leq x \leq -2.$$


Значит, наименьшее значение х удовлетворяющее данной системе неравенств -4.

Ответ: -4.

Прямая касается окружности в точке K. Точка O — центр окружности. Хорда KM образует с касательной угол, равный 60° . Найдите величину угла OMK. Ответ дайте в градусах.

Прямая касается окружности в точке K. Точка O — центр окружности. Хорда KM образует с касательной угол, равный 60° . Найдите величину угла OMK. Ответ дайте в градусах.

Решение.

Угол, образованный хордой и касательной равен половине дути, которую он заключает, поэтому величина дуги MK равна $2\cdot 60^\circ=120^\circ$. Угол KOM — центральный, поэтому он равен величине дуги, на которую опирается. Значит, угол KOM равен 120° . В треугольнике OMK стороны OK и OM равны как радиусы окружности, поэтому треугольник OMK — равнобедренный, следовательно, углы при основании равны. Сумма углов треугольника равна 180° , поэтому $\angle OKM = \angle OMK = (180^\circ - \angle KOM)/2 = (180^\circ - 120^\circ)/2 = 30^\circ$.

Ответ: 30.

Периметр ромба равен 24, а синус одного из углов равен $\frac{1}{3}$. Найдите площадь ромба.

Периметр ромба равен 24, а синус одного из углов равен $\frac{1}{3}$. Найдите площадь ромба.

Решение

Периметр ромба равен сумме длин всех его сторон. Так как все стороны равны, сторона ромба равна б. Площадь ромба равна произведению сторон на синус угла между ними, поэтому

$$S = 6 \cdot 6 \cdot \frac{1}{3} = 12.$$

Ответ: 12.

Решите уравнение $x(x^2 + 2x + 1) = 2(x + 1)$.

Решите уравнение $x(x^2 + 2x + 1) = 2(x + 1)$.

Решение.

Последовательно получаем:

$$\begin{aligned} x(x^2+2x+1) &= 2(x+1) \Leftrightarrow x(x+1)^2 - 2(x+1) = 0 \Leftrightarrow (x+1)(x(x+1)-2) = 0 \Leftrightarrow \\ &\Leftrightarrow (x+1)(x^2+x-2) = 0 \Leftrightarrow (x+1)(x+2)(x-1) = 0 \Leftrightarrow \begin{bmatrix} x = -1, \\ x = -2, \\ x = 1. \end{bmatrix} \end{aligned}$$

Ответ: -2; -1; 1.

Имеются два сосуда, содержащие 4 кг и 16 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 57% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 60% кислоты. Сколько килограммов кислоты содержится в первом растворе?

Имеются два сосуда, содержащие 4 кг и 16 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 57% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 60% кислоты. Сколько килограммов кислоты содержится в первом растворе?

Решение

Пусть концентрация первого раствора - х, концентрация второго раствора - у. Составим систему уравнений согласно условию задачи:

$$\begin{cases} 4x+16y=(4+16)\cdot 0,57\\ x+y=2\cdot 0,6. \end{cases} \Leftrightarrow \begin{cases} 4x+16\cdot (1,2-x)=11,4\\ y=1,2-x. \end{cases} \Leftrightarrow \begin{cases} x=0,65\\ y=0,55. \end{cases}$$

Таким образом, в первом растворе содержится $4\cdot 0,65=2,6$ килограмма кислоты

Ответ: 2,6